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Abshact. The CM operations are introduced in the theory of qf spacetime. They have the 
same properties as the tilde NI- in thema field dynamics Om); we can, therefore. identify 
them with the tilde operation. This leads to the conclusion that the tilde system in m can be 
regarded as the system in region II (mirror universe) of q4 spacetime. 

1. Introduction 

In recent years thermo field dynamics (TFD) [l, 21, as a real-time formulation of finite- 
temperature field theory, has amacted much interest. Evolving from condensed matter 
physics, it has been applied to high-energy physics, cosmology, nuclear physics, etc. In the 
framework of TFD, the tilde fields and the tilde conjugation rules play important roles. The 
tilde fields denote the degrees of freedom which are introduced in TFD to double the system. 
This doubling of the degrees of freedom characterizes the thermal properties of the system. 
The tilde rules show the connection between the tilde fields and non-tilde fields, so it can 
be regarded as definition of the tilde operation in TFD. The tilde rules have the following 
forms [2, 31: 

[ A B ] - = i g  [ C t A + C z B ] - = C ; X + C ; g  

(A)- = C A  (A)' = (A+)- (1.1) 

where c = 1 for bosons and -1 for fermions. In this paper we will discuss the physical 
meaning of the tilde fields and derive the tilde rules in the framework of the theory of q-5 
spacetime [4-81. We find that the tilde fields are fields in region I1 (mirror universe) in 7-E 
spacetime. The tilde operation corresponds to the following operations: first the fields in 
region I (our universe) are mapped onto the fields in region II, then a charge conjugation 
is operated on the obtained fields to get the tilde fields. Starting from these operations, we 
get the tilde rules. 

The field theory in q-5 spacetime is a geometrical formalism for finite temperature field 
theory. q q  spacetime is a maximal analytical complex extension of the manifold with 
topology S' x R3.  Both the imaginary- and the real-time formalisms of finite-temperature 
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field theory can be connected in q< spacetime. which can be regarded as the background 
spacetime for finite-temperature field theory. In previous papers 14-91, we have proven the 
following results. The field theory on the Euclidean section in q-$ spacetime corresponds to 
the imaginary-time finite-temperature field theory, the field theory on the Lorentzian section 
in q-$ spacetime corresponds to I”. On the Euclidean section, quantum fields automatically 
satisfy the periodicity for imaginary-time t, so the Euclidean Green functions in q-f 
spacetime correspond to the imaginary-time thermal Green functions. On the Lorentzian 
section, ‘horizons’ lead to the doubling of degrees of freedom of fields, and the vacuum 
Green functions in q< spacetime are equal to the real-time thermal Green functions with a 
2 x 2 manix in Minkowskian spacetime; and TFD corresponds to the Hamiltonian formalism 
of qf field theory. Similar to the Hawking radiation theory for black holes, the vacuum 
for fields in qf spacetime is found to correspond to the thermal state for a static observer 
in Minkowskian spacetime, and the qf vacuum has the same form as the thermal vacuum 
in TFD. All these factors lead to an interesting connection between qf spacetime and 
finite-temperature field theory. 

This paper is organized as follows. In section 2, the geometrical and topological structure 
of 11% spacetime is briefly reviewed. We put emphasis on the coordinate relations between 
regions I and Il on the Lorentzian section. In section 3, starting from the coordinate 
relations, we construct the CM operations in q+ spacetime. Here the C operation stands 
for the charge conjugation. The M operation stands for the mapping of fields caused by 
the inversion of coordinates q and 6 .  In the Minkowskian description, the inversions of 
q and ( correspond to a finite translation of time in the imaginary-time direction. Some 
properties of the CM operation are presented and found to be the same as the tilde rules. 
In section 4, the CM operation is applied to the discussion of some important relations in 
TFD. It is suggested that the tilde freedoms can be regarded as the freedoms in region I1 on 
the Lorentzian section in qf spacetime. Section 5 is devoted to the conclusion. 
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2. q-c spacetime 

qf spacetime is a four complex dimensional spacetime with complex metric: 
ds2 = CY-’((’ - q2)-’(-dq2 + deZ) + dy2 + dZ2 (2.1) 

where a is a real constant, and q. 6 ,  y, z are complex variables. While 6, y, z are limited to 
real variables, and q is a pure imaginary variable iu, the Euclidean section of q< spacetime 
is obtained: 

(2.2) ds 2 -  - a -2 (6 2 + a2)-’(du2 + dc2) + dy2 + dz’. 

The metric (2.2) is singular at c = f = 0, so it describes a EucIidean spacetime wifh 
topology S‘ x R’. It can be regarded as background spacetime for imaginary-time finite- 
temperature field theory. The periodicity of imaginary-time now becomes the periodicity of 
polar angle B = at, where a = 2ir f p .  

The Lorentzian section of qf spacetime is 

(2.3) 

q * . $ = O  (2.4) 

2- -2 2 ds - 01 (c - q2)-’(-dq2 + de2) + dy2 + dZ2 
but it should be noted that (2.3) is gained from (2.1) hy limiting q, 6 ,  y, z to real variables. 
According to (2.3), the singularities of the Lorentzian section are described by 

which divide the Lorentzian section into four disjointed parts I, II, In, IV (figure 1) .  Each 
of them is identified with a Minkowskian spacetime which can be related to other regions 
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only through complex paths. This can be seen from the following transformations. If a 
Minkowskian spacetime 

dsz = -dtz + drz f dyz + dz2 (2.5) 

is transformed by 

q = a-'eUx sinhat 6 = or-'eex coshaf ( 2 . 6 ~ )  

with y ,  z unchanged, the result is metric (2.3). But equations ( 2 . 6 ~ )  can illustrate only a 
quadrant of the Lorentzian section, i.e. region I. To get other regions, the transformation of 
Minkowskian spacetime are: 

7 -a-'e'X sinhat f = - a - Ieaxcoshat (2.6b) 
q = a-'enx coshrut = a-'eUX srnh ' at ( 2 . 6 ~ )  
q = -a-'eUx coshat 6 = -or-le'X smhat . (2 .64 

which lead to regions 11, III, IV, respectively. The appearance of singularities (2.4) and 
the existence of several regions make it possible for the Lorentzian section to provide the 
doubling of degrees of freedom. 

Figure 1. 

There we close relations between transformations ( 2 . 6 ~ )  and (2.6b): 

11 = -a-'e'x sinhat = a-'e'X sinha(t - ip/2) 
6 = -a-LeoLx coshort = a-'e"Xcosha(t - ij?/2). (2.7) 

Using Minkowskian coordinates ( t .  x ,  y .  z), the relations between a point al(t1, XI, y ~ .  2 1 )  
in region I and its reflected point or&, x z .  y z , z z )  in region I1 are: 

t2  = tl - ip/2 x2 = XI Y2 = Y1 22 = ZI (2.8) 

i.e. their Minkowskian coordinates differ only in an imaginary-time interval ig/Z. 
While expressed by coordinates (q ,  F ,  y. I ) ,  the relations between al(q1, t1, y ~ ,  Z I )  and 

112 = -VI h = -h Y2 = Yl zz=z1. (2.9) 

a z h  52 .  YZ. z d  are: 
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Another important relation is that the direction of time t in region II is against the time 
direction in region I. One can see this by the use of the Killing vectors in q< spacetime. 
The time-like Killing vectors on the Lorentzian section are defined as [5] 

(2.10) 

in which E is 1 and - 1 for regions I and U respectively. In region I, the out-normal direction 
of hyperplane A = constant coincides with that of the equal-time surface t = constant. But 
in region II, it is anti-parallel to that of surface t = constant. 

3. The CM operations in q< spacetime 

The relations (2.9) imply that the inversions of coordinates q and 6 will result in the 
txansformation between the physical systems in regions I and II. Thii situation is a little 
similar to the CPT operation in Minkowskian spacetime. However, the CM operations, 
which will be discussed later, result in a new transformation. This can be seen from (2.8) 
and (2.9). If the coordinates 7 and e are inversed, the Minkowskian space coordinates are 
kept intact, while the Minkowskian time is translated ip/2 in the imaginary-time direction. 

First let us consider the M operation. M is the operator which maps a field onto 
the field with inversed q and coordinates. SimiIar to the time inversion in Minkowskian 
spacetime, the M operation is anti-linear. The reason is that the direction of t imdiie  Killing 
vector is parallel to the direction of Minkowskian time t in region I, but anti-parallel to the 
Minkowskian time direction in region U. The M operations on the bosonic field q(q. e,  y, z )  
and fermionic field +(q, 5 ,  y .  z) are 

(3.1) 

the matrix T can be determined by the invariance of the Lagrangian of fermionic field in 
q+ spacetime [7]:  

(3.2) 

under the M operation. Here E is given in (2.10). Since only operation between regions I 
and U is considered, the Lagrangian of fields in regions IJI and IV are omitted. From the 
above restriction, T is adopted as yzyoy ' .  

Since the Minkowskian coordinates are adopted in the tilde rules, we shall change the 
M operation into a form with Minkowskian coordinates. For bosonic fields, we can directly 
change the 7-6 coordinates into the Minkowskian coordinates. For fermionic fields, this 
can be done by the use of the relations between fermionic fields in q+ vierbeins and the 
same fields in Lorentz vierbeins [7]: 

@ -+ (cos $ur - iy 0 1 .  y sin p r ) *  I 

+ -+ $(cos $015 + iy'y' sin+). 

As for region II 

(3.3) 

t = p/2 = x / a  (3.4) 
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(3.3) becomes 

@(-o, -t, Y .  z )  + -iy0y2@(t - i ~ / 2 ,  x) 
(3.5) -t, Y, z )  + 40 - i ~ / 2 , x ) i y " y ~ .  

TO get the tilde rules, the charge conjugation operation is also needed 

From (3.1), (3.5) and (3.6), it is easy to get the CM operations on bosonic field fp and 
fermionic field @: 

~ ~ q ( t ,  x)M-'c-] = fp+(r - ig/2, x )  

cMq(r ,  x)M-'c-' = y"$'(t - igj2, x) = @*(r - iB/2, x). (3.7) 

According to the above discussions, a set of rules identified with (1.1) can be obtained. 
First we consider bosonic fields q1 and $12 

CM[vl(tl, x1)(02(r2, x2)1M-'C-' = v:(tl - ig/2, x1)fp2(t2 - i ~ / 2 .  xz) 
CM[CMq(t, x)M-'C-']M-'C-' = p(t. x )  

C M [ C I ~ ~ I ( ~ I ,  x , )  + cz(02(t2, x)IM-'c-' = c;fp:a, x )  + cZtd(t2, xz)  
CM[q+(t,  x)]M-'C-' = [CMq(r ,  X)M-'C-'l+. 

(3.8) 

Here the c-numbers are conjugated under the CM operation for the reason that the M 
operation is anti-linear, If fp+(t - ig/Z, x )  and the CM operations are taken as the tilde 
field @(t, x )  and tilde operation respectively, one notes immediately that (3.8) are just the 
tilde conjugation rules for bosonic field. 

As in the bosonic field case, we can obtain the following results for fermionic fields $1  

and @2: 

CM[@l(rl, xl)@2(r2, X ~ ) W C - I  = $:(ti - ip/2, x1)$;'2*(t2 - i ~ / 2 ,  xz) 
CM[@+@, x)IM-'C-' = [ C M @ ( t ,  x)M-'C-']+ 
cM[cI@l(r l ,  XI) + cZ@dt2. x ~ ) I M - ] ~ - ' = ~ ; I c I ; ( ~ I  - ig/z, xl) + c;@& - @/2. xz) 
CM[CM@(~,  x)M-'c-]]M-'c-'  = $(r - iB, x) = -e@, x). (3.9) 
To get the last equation in (3.91, the anti-periodical boundary condition for fermionic field 
is used. 

The properties of the CM operations in 7 4  spacetime are given by (3.8) and (3.9), 
which coincide with the tilde rules in TFD. Since the tilde operation is defined by (l.]), it 
can be said that the CM operations in v-t spacetime identify with the tilde operation in 
TFD. 

4. Discussion 

It is suggested that [lo], after the tilde system and thermal vacuum are introduced, the TFD 
can be constructed by the use of two sets of operators ( A }  and (2)  with several important 
relations. Some of these relations are: 

(i) At equal time, tilde operators and non-tilde operators commute (for bosonic operators) 
or anti-commute (for fermionic operators): 

[ A ,  E]* = 0 (4.1) 
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(ii) There is a set of tilde tules (1.1). 
(iii) The thermal vacuum is invariant under the tilde conjugation: 

[lo(B))l- = lO(P)). (4.2) 

(iv) A spacetime translation of non-tilde operator A is induced by the non-tilde energy- 
momentum operator P,,: 

A ( x )  = exp(iP,,X’)A exp(-iP,,X#). (4.3) 
In the last section, we have given the tilde rules through introducing the CM operations 

in q+ spacetime, thus have explained the tilde rules. In this section, we will see whether 
the other relations can be explained in the theory of a--$ spacetime. 

First let us consider the relation about commutative properties. One remembers that 
the CM operations map field operators in region I onto corresponding conjugated field 
operators in region E. According to the conclusion of the last section, the CM operations 
identify with the tilde operation. Considering these facts, one may regard A and i as 
operators in regions I and IJ respectively. As each of the regions is a whole Minkowskian 
spacetime. no real propagator can relate one region to another. Consequently, no direct 
causal relation exists between these regions. So the commutation or anti-commutation 
relations of tilde and non-tilde operators can be explained by the principle of microcausality, 
which indicates that operators with no causal relations existing between them shall commute 
or anti-commute. From the point of view of q+ spacetime, (4.1) can be generalized to 
non-equal-time situations. 

Now we will show the invariance of thermal vacuum under the CM operations. To 
do this, one shall know the results of the CM operations on state vectors. Since physical 
systems in region I are transformed by the CM operations into corresponding systems in 
region II, the Minkowskian vacuum in region I changes into the Minkowskian vacuum in 
region II: 

CMI0)f = 10)1/. (4.4) 
It is natural to assume that the latter is just the tilde vacuum 18) in TFD. Similarly we can 
get states In)l(ln)) and In)ll(lA)), from which the thermal vacuum is constructed [I]: 

(4.5) 

The second expression is just the vacuum defined on the whole Lorentzian section [5 ] .  The 
CM operations on (4.5) changes In)[ 0 In)rr into In)/{  @In), .  Usually, such an exchange in 
direct products leads to a different result. But here the two vectors have the same particle 
number n and the values of n are summed, thus the thermal vacuum does not vary. Hence, 
if the tilde operation is regarded as the CM operation, we have proved the invariance of 
thermal vacuum under the tilde operation. 

As for the fourth relation, one can find at once that it is the same as the usual translation 
in Minkowskian spacetime. So it is certainly true in region I which is a Minkowskian 
spacetime. 

The above discussion leads directly to the idea that the non-tilde systems and tilde 
systems can be regarded as the systems in regions I and 11, respectively. 

5. couclusion 

In this paper, starting from the coordinate relations in q+ spacetime, we introduced the CM 
operations on the Lorenmian section. Since the CM operations have the same properties 

l0(6)) = z-”’ Ce-pEnflln) 0 ~ri) = z”’ Ce-pgn”ln)l 0 In)![. 
“ n 
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as the tilde rules, we identify them with the tilde operation. Furthermore, since the CM 
operations transform the physical system in region I into the system in region 11, it is 
natural to draw the following conclusion: if the non-tilde system is regarded as thc system 
in region I, the tilde system can be regarded as the system in region II. This conclusion 
provides a possibility of avoiding the arbitrariness existing in TFD. It may be helpful in 
understanding the characteristic of doubling the degrees of freedom in TFD. 

Finally we shall emphasize again that, although the CM operations are also 
transformations caused by the inversion of the spacetime coordinates, they are quite different 
from the CFT operation in Minkowskian spacetime. If Minkowskian coordinates are adopted 
and imaginary-time is introduced, the CM operations translate the physical systems in the 
direction of imaginary time, then inverse the gained complex time. Symmetry under such 
operations is unfamiliar. While we take advantages of q+ coordinates, the CM operations 
have the form of inversions of ‘space’ coordinate 5 and ‘time’ coordinate q .  Besides, both 
of the ‘space’ and ‘time’ have real coordinates. Thus a new discrete symmetry desired 
by TFD, i.e. symmetry between tilde and non-tilde systems, is exposed by qf spacetime 
through symmetry of ‘space’ and ‘time’. 
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